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Abstract
The tight-binding Hamiltonian and retarded Green function formalism are used
to study the local and total density of states of a monatomic quantum wire. An
additional atom (adatom) can be coupled with the wire at its side. Also the
local and average charges of the perfect and disturbed wire are shown and the
analytical formula for the local density of states at each site is obtained. The
local density of states at each atom in a wire which consists of an even number
of atoms is characterized by minima at the Fermi level, in comparison with a
wire disturbed by an adatom, where the density of states is characterized by
local peaks. Charge fluctuations (waves) are observed in the wire for the case
when the condition for the conductance oscillations is satisfied. For the single
electron energies of a wire localized above the Fermi energy the local charge
along the wire forms a wave curve which possesses one maximum less than for
energies localized below the Fermi level.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, due to the rapid progress in nanotechnology, electron transport through one-
dimensional systems has been the subject of active theoretical and experimental research.
Monatomic quantum wires are fundamental blocks for nanoelectronic devices; thus it is
important to know their electronic properties. The knowledge of these properties is crucial
for the fabrication of nanosystems. Such one-dimensional wires can be formed using for
example scanning tunnelling microscope (STM) methods [1], the mechanically controlled
break junction (MCBJ) [2, 3] or on vicinal surfaces [4–7].

The electronic properties of quantum wires (QWs) have been investigated theoretically
and many interesting phenomena have been found; see e.g. [3]. One of them is the even–odd
conductance oscillations [8–12]. The value of the conductance oscillates when the number
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of atoms in the wire is changed. Also, oscillations with period greater than two have been
predicted theoretically [13, 14]. Other interesting phenomena concerning one-dimensional
systems are spin–charge separation [15], spontaneous spin polarization [16–18] or conductance
quantization [19]. The adsorption on an infinite wire of a single hydrogen or oxygen atom was
investigated theoretically in [20] and experimentally in [21], and the results indicate that the
conductance is blocked in the presence of such atoms. Also an extended cluster of atoms
connected to an infinite atomic chain was studied in [22]. The electrical conductance of an
infinite wire with a side-coupled quantum dot (QD) array was investigated theoretically in [23].
The authors concentrated on the influence of the length of a QD array on the conductance
through the wire.

The charge distribution in a quantum wire determines its electronic properties. Using a
first-principles density-functional method the excess Mulliken charge for different atoms in
linear chains was obtained in [24]. For a gold (Au) chain strong charge transport was observed
and the chain end atoms gained an extra electron charge due to the difference between the lead
and chain work functions. Also, the number of electrons occupying the even and odd QW
states are correlated with the resistance of a symmetric molecule [25]. The charge filling of
the QW results in the periodicity of the conductance and these periods are determined by the
inverse of the conduction band filling [13]. The average charge of a wire oscillates with the wire
length (with the same period as the conductance) but for an infinite length it tends to a constant
value [13, 14]. Neither of the papers mentioned above have described the charge oscillations
inside a wire, and only non-disturbed wires were taken into consideration.

In this paper we are interested in the density of states and charge distribution in a perfect
wire and in a wire disturbed by a side-attached adatom. The additional atom can modify the
electron properties of the wire depending on the kind of adatom and the coupling with QW.
We focus on the analytical solutions for the local density of states (LDOS) at the wire sites in
a perfect wire and in the presence of an adatom on it. The knowledge of the LDOS enables us
to obtain the local and average charges in the wire. The tight-binding Hamiltonian and Green
function method are used in our calculations. The local and total density of states and the
formation of the charge waves in a perfect wire are discussed. Also the influence of an adatom
on these quantities is analysed.

The paper is arranged as follows. In section 2 the Hamiltonian for a perfect and disturbed
wire is presented and the theoretical expressions for the conductance are obtained. In section 3
the numerical results are shown. The discussion of the obtained results is included in
sections 3.1 (perfect wire) and 3.2 (disturbed wire). In section 4 some general conclusions
are presented.

2. Theoretical description

Our model system—a quantum wire connected to metallic leads with a side-attached atom
(adatom)—is described by the following tight-binding Hamiltonian H = Hwire + H ′, where
Hwire corresponds to the non-disturbed QW:

Hwire =
∑

�kα=L ,R

ε�kαa†
�kα

a�kα +
N∑

n=1

εna†
nan +

∑

�kL ,�k R

V�kL(R)a
†
�kL(R)

a1(N) +
N−1∑

n=1

Vna†
nan+1 + h.c. (1)

and H ′ describes the adatom energy, H ′ = εxc†
x cx + tc†

x al + h.c. For simplicity a single orbital
per site and only the nearest-neighbour interactions are assumed. Here the operators a�kα(a†

�kα
),

an(a†
n) and cx(c†

x) are the electron annihilation (creation) operators in the lead α (α = L, R),
at atomic site n (n = 1, . . . , N) and at the adatom, respectively. The hopping parameter
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V�kL(R) is the electron tunnelling coupling between the electron states in the left (right) reservoir
and the first (last) atom and t (Vn) is the hopping integral between the electron state of the
adatom and the QW atom (nth and (n + 1)th QW atoms). As we are not interested in many-
body effects, e.g. the Kondo effect, the electron–electron correlations are neglected in the first
step. This assumption is quite reasonable in some one-dimensional systems, especially for
non-magnetic atoms [14, 23]. The neglecting of the Coulomb interactions is justified when the
broadening due to electron–electron interactions within the wire is less than the broadening of
the molecular levels [25] and for example the electronic structure of alkali nanowires is well
described in terms of free and independent electrons [26]. Moreover, the electron–electron
correlation does not change the period of conductance oscillations and when the single electron
energies correspond to the Fermi energy the even–odd conductance oscillations are the same as
for U = 0 [18].

The following notation is used in the paper: the capital letter N expresses the length of
the wire, the small letter n indicates the number of an atom in the wire n ∈ (1, . . . , N) and
the index l corresponds to the QW atom which is coupled with an adatom l ∈ (1, . . . , N). We
can find the local charge at zero temperature localized at QW atoms from the retarded Green
function, Gr

nn, using the following relation:

Qn = −1

π

∫ EF

−∞
Im Gr

nn(E) dE =
∫ EF

−∞
LDOSn(E) dE (2)

where LDOSn means the local density of states at site n. Next, we assume the symmetric
case �L = �R = � (where �L(R) = 2π

∑
�k |V�kL(R)|2δ(E − ε�kL(R))) and consider the same

electron energies of all atoms in the wire, i.e. εi = ε0, and the same coupling strengths
between the nearest-neighbour electron states in the wire, Vn = VN . These assumptions are
reasonable as we concentrate on the zero or very small source–drain voltage regime and take
into consideration the wire which consists of the same kind of atoms.

We can write the general matrix equation for the retarded Green function as follows:
(E I − H −1) · G(E) = AN+1 · G(E) = I , where I is the unit matrix and the matrix AN+1 can
be written in the form

AN
i, j = (E − ε0)δi, j − VN (δi, j+1 + δi+1, j) + i

�

2
(δi,1δ1, j + δi,N δN, j )

Ak,N+1 = AN+1,k = (E − εx)δk,N+1 − tδk,l .
(3)

Here i, j � N , k � N + 1 and AN
i j is an N × N tridiagonal symmetric matrix. By finding the

inverse of the matrix AN+1 we can obtain the retarded Green functions Gr = (AN+1)−1. In our
case one can write

Gr
nn(E) = cofAN+1

nn

det AN+1
(4)

where cofAN+1
nn is the algebraic complement of the matrix AN+1 (cofactor). Using

equations (2)–(4) the local density of states can be expressed in the form

LDOSn = − 1

π
Im

det Bn−1 det B N−n + t2

E−εx
det Bmin (l,n)−1 det A|l−n|−1 det B N−max (l,n)

det AN + t2

E−εx
det Bn−1 det B N−n

(5)

where det AN corresponds to a non-disturbed QW and can be obtained fully analytically from
the following relation; see [14]:

det(AN ) = det(AN
0 ) + i� det(AN−1

0 ) − �

2
det(AN−2

0 ). (6)
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The matrix AN
0 corresponds to a wire which is non-coupled to the leads and non-disturbed by

the adatom. The determinant of the matrix B in equation (5) can be also expressed by means
of the AN

0 matrix, i.e.

det(B N ) = det(AN
0 ) + i

�

2
det(AN−1

0 ), (7)

with the conditions det(A−1
0 ) = 0, det(A0

0) = 1 and det(A1
0) = E − ε0. The determinant

det(AN
0 ) can be expressed in terms of Chebyshev polynomials of the second kind, u(φ),

i.e. det(AN
0 ) = V N

N uk(φ), where φ plays the role of the Bloch phase φ = arccos( ε−ε0
2VN

). For
n = l (the adatom is coupled with the nth QW atom) equation (5) reduces to

LDOSn = − 1

π
Im

(
det AN

det Bn−1 det B N−n
+ t2

E − εx

)−1

. (8)

Moreover, as |εx | → ∞ (the single electron energy of the adatom is situated far from the Fermi
level) the LDOS does not depend on the adatom parameters, and it can be obtained from the
following relation: LDOSn = − 1

π
Im det Bn−1 det B N−n

det AN . The local density of states at the QW
atom, equation (5) and also equation (8), are the main analytical results of this paper.

Next, we would like to find the condition for which the local charge changes from one atom
to another in a periodic way. The relation equation (5) is expressed as a function of AN

0 ; thus it
should satisfy the same condition for the oscillations as the conductance. (The conductance can
be expressed by means of AN

0 , [14].) We expect that for this condition the QW charge should
behave in a special way, i.e. charge fluctuations (waves) with a fixed period or constant value
of the charge can be observed. The relation for an M-atom period of the conductance can be
written as follows [14]:

cos

(
πl

M

)
= E − ε0

2VN
, 0 < l < M. (9)

This equation indicates the relation between E−ε0 and VN which leads to M-atom conductance
oscillations and for example the even–odd oscillations, M = 2, are observed for E − ε0 = 0.
For a period equal to M one has M − 1 possible solutions of equation (9). It is interesting that
when the conductance oscillates with a fixed period of M the following relation is satisfied:
det Bn−1 det B N−n ≡ det B(n+M)−1 det B N−(n+M). This relation can be helpful in analysing the
values of the LDOS for different atoms in the wire.

3. Results and discussion

In our calculations we put the Fermi energy as the reference energy point (EF = 0) and express
all energies in units of �. Moreover, the zero temperature case is assumed.

3.1. Non-disturbed quantum wire

The knowledge of the wire density of states allows us to obtain for example the charge localized
at QW atoms. In figure 1 we show the local density of states at the first atom, n = 1 (thick
solid lines), and at n = 2, 3 atoms (thin solid and broken lines) for a wire which consists of
N = 6 (N = 7, 18) atoms—upper panel (middle and lower panel, respectively). Here we put
VN = 4 and consider the case when the conductance oscillates with the period of four atoms,
i.e. ε2

0 = 2V 2
N . We observe non-zero values of the LDOS only for E − ε0 � 2VN —the electron

band structure of the wire is limited to this region. Every LDOS is a symmetric function of the
energy E = ε0. Moreover, for an N-atom wire the LDOS of the nth atom is the same as that of
the (N −n +1)th atom: for example, for N = 6 (upper panel) the LDOS for the n = 1 (2, 3)th
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Figure 1. Local density of states at the n = 1 (2 and 3)th atom—thick solid lines (thin and broken
lines, respectively) for the length of the quantum wire N = 6 (upper panel) for ε0 = −√

2VN and
VN = 4, � = 1. The middle (lower) panel corresponds to N = 7 (N = 18).

atom is the same as for n = 6 (5, 4)th atom, respectively. The symmetry of the LDOS results
from the symmetric model of the wire coupled with leads. It is interesting that for an N-atom
wire one observes N local maxima in the LDOS. For an odd number of atoms in the wire, the
LDOS of every odd atom is characterized by a local maximum for E − ε0 = 0, whereas for
an even number N the LDOS is minimal for every atom—compare for example the upper and
middle panels for E − ε0 = 0 (in the case of N = 7 the LDOS of the n = 1, 3, 5, 7th atom
possesses the same maximal value).

The heights of all LDOS peaks are different, depending on the position of the atom in the
wire. Generally, we observe that for atoms which are at either ends of the wire the heights of
LDOS peaks are more or less the same, whereas for atoms situated in the middle of the wire the
edge LDOS peaks are much higher than in the middle of the energy band; compare the broken
and thin solid lines. This effect is due to the connection between the wire and electrodes. The
atoms which are close to one of the electrodes are characterized by wider LDOS peaks due to
the � coupling. The influence of the electrodes on the middle QW atoms is smaller and this is
the reason we observe rather high peaks in the LDOS for these atoms.

Here we would like to discuss the influence of the LDOS on the conductance through
the system. It is known that for every odd-length QW, when the single electron energy ε0

corresponds to the Fermi level, E − ε0 = 0, the conductance is maximal. In this case, the
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Figure 2. The total density of states at the Fermi level (EF = 0) as a function of the wire’s length,
N , and ε0. � = 1, VN = 4.

electron tunnels through such wire but the LDOS at the Fermi energy is almost zero for every
odd atom in the wire; for example for N = 3LDOS(EF) is maximal for n = 1, 3 and is zero
for n = 2. One can expect that in this case the LDOSs at the Fermi level should be maximal
(or finite) for every atom in the wire, but this is not true. In this case the electron tunnels very
quickly and spends very little time at each side. Thus according to the Heinsenberg uncertainty
relation the indeterminancy of energy is rather large and the electron can tunnel through the
LDOS peaks (side-bands) which are not at the Fermi level. For a wire which consists of an
even number of atoms, the LDOS at the Fermi energy is almost zero for all atoms and the
conductance is minimal. Here the possibility of the electron tunnelling from the lead to the first
QW atom is very small due to almost zero value of the LDOSs. In that case the electron spends
a rather long time in the electrode and its energy is very well determinate. Thus the electron
cannot tunnel through the LDOS side bands.

In figure 2 the QW density of states as a function of the wire’s length, N , and the single
electron energy, ε0, is shown: DOSN = ∑n

i=1 LDOSi —this corresponds to the total DOS of
the system. As one expects, the periodic structure of DOS at the Fermi level is correlated with
the conductance through the system—one can compare this picture with figure 1 in [14]. Here
one can easily check the condition for the conductance oscillations, equation (9); for example,
for ε0 = ±VN a three-atom period is observed. The heights of the local maxima in figure 2
increase with N because one has to sum the LDOS for more atoms. This figure shows that the
knowledge of LDOS allows us to determine the conductance of the system (the LDOSs must
be summed). The product of LDOS(EF) for N > 1 is almost zero due to the above-mentioned
minima of the LDOS at the Fermi level and is not linked with the conductance through the
system at all. In that case one does not observe any oscillations like in figure 2.

Figure 3 presents the local charge localized at every atom of the wire—the lengths of
the wire are as follows: N = 1, 2, 3, 4 (upper panel) N = 5, 6, 7, 8, 10 (middle panels) and
N = 18 (lower panel). In this case we put ε0 = −√

2VN , which leads to four-atom oscillations
of the conductance. Let us analyse how the charge is distributed in the wire when the length
of the wire is changed. For N = 1 (one-atom wire) the charge localized at the first atom Q1

is indicated by the single star in the upper panel. For the two-atom wire (N = 2) we have
Q1 = Q2 as we consider here the symmetric model. This symmetry is also visible for different
N (see other panels), i.e. Qn = QN−n+1. For the three-atom wire, N = 3, the charge at the
middle atom Q2 is lower than for edge atoms Q1 and Q3. A similar conclusion is also valid
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Figure 3. Local quantum dot charges at every atom for an N = 1, 2, 3, 4, 5, 6, 7, 8, 10 and 18 QW
(from upper to lower panel) and for ε0 = −√

2VN and VN = 4, � = 1. The lines are plotted for
better visualization.

for N = 4, 5, 6. For N = 7 we observe the local maximum of the local charge for Q4 and a
similar behaviour is visible for N = 8 and 10—the maxima lead to oscillations of the charge
localized in the wire. These oscillations (with a period of 4) are better visible for N = 18 (the
lower panel). In that case the charge localized at atoms oscillates with the same period as the
conductance. It is worth mentioning that we observe the conductance oscillations as a function
of the wire length N , whereas the local charge oscillations are visible for a fixed length of
the wire. It is expected that the formation of charge waves inside the wires can be confirmed
experimentally. Few-atom wires consisting of a different number of atoms can be formed on
vicinal surfaces, for example Au wires on vicinal Si surfaces [4–6]. The length of such wires
depends mainly on the amount of deposited atoms. The knowledge of the LDOS at every atom
(measured for example with the STM method) allows us to obtain the local charge. Thus the
results shown in figure 3 can be simply verified.

In figure 4 we show the local charges localized at every atom of an N = 18 quantum
wire (n = 1, . . . , 18) for VN = 4 and for ε0 = ±VN (thin solid lines), ε0 = ±√

2VN (solid
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Figure 4. Charges localized at every atom for an N = 18 QW for ε0 = −VN ,−√
2VN ,−√

3VN

(thin solid, solid and thick solid lines, respectively)—upper panel. The lower panel corresponds
to ε0 = +VN ,+√

2VN ,+√
3VN (thin solid, solid and thick solid lines, respectively). VN = 4,

� = 1. The broken lines correspond to the non-resonant case ε0 = ±1.093VN . The lines are
plotted for better visualization.

lines) and for ε0 = ±√
3VN (thick solid lines). Here the sign plus (minus) corresponds to the

lower (upper) panel. The positions of ε0 correspond to three-, four- and six-atom periods of
the conductance oscillations, and as one can see, the same periods are observed in the local
charges inside the wire. It is interesting that although we consider the same single-electron
energies, ε0, and the same hoppings between atoms, VN , the charges localized at every QW
atom are different and oscillate with n. These oscillations result from the structure of LDOS of
the wire, i.e. for different atoms we observe different heights of the LDOS peaks. The broken
lines in figure 4 correspond to ε0 = ±1.093VN —near the three-atom period of the conductance
(but out of this condition). In that case the local QW charge is not an oscillatory function of
n although for ε0 = ±VN these oscillations are observed. It is worth mentioning that the
amplitude of the charge waves inside the wire is maximal for end atoms and decreases for the
middle ones. This suggests that the charge fluctuation effect is observed due to the reflection
of an electron on the end of the wire. It was checked that these oscillations remain for very
small �. The coupling parameter � influences the half-width of the LDOS peaks at the QW
atoms and for finite � it is easier to numerically integrate the appropriate LDOS functions. The
effects of charge fluctuations in low-dimensional systems have been observed experimentally
(see e.g. [27, 28]) and were explained in terms of Friedel oscillations. The electron waves in
two-dimensional systems are dramatically affected by small defect concentrations. Similarly,
wire end atoms or wire–electrode connections play the same role, causing the formation of
charge waves. These fluctuations inside the wire strongly depend on the relation between ε0

and VN and, as was mentioned above, for the non-resonant case (equation (9) is not satisfied)
the charge waves disappear very quickly; see the broken line in figure 4.

One can conclude that the distribution of local charges in the wire is linked with the
conductance oscillations and for an M-atom period of the conductance we observe inside that
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Figure 5. The average QW charge versus the length of the wire N for VN = 1, 2 and 4 (broken,
thin solid and thick solid lines) and for ε0 = ±VN (ε0 = ±√

2VN )—left panels (right panels). The
lines are plotted for better visualization. � = 1.

wire a charge wave with period M . Here we do not consider the even–odd oscillations as in this
case the LDOS at every QW atom is symmetrical versus the energy EF = ε0 = 0, and using
equation (2) we obtain Qn = 0.5 for n = 1, . . . , N .

Now we analyse the case when the single electron energies ε0 are localized below and
above the Fermi energy (the upper and lower panel in figure 4, respectively). It can be seen
that for ε0 < EF (ε0 = −VN ,−√

2VN ,−√
3VN ) the edge-atom occupations are higher than

that for the middle atoms (upper panel). For ε0 > EF (lower panel) the charges localized at the
wire end atoms are lower than for the middle atoms. This leads to a very interesting result: for
ε0 localized above the Fermi energy the local charge curve possesses one maximum less than
for ε0 localized below EF; for example, the thick solid line for ε0 = +√

3VN (lower panel)
possesses three local maxima whereas for ε0 = −√

3VN (upper panel) there are four local
maxima. It is worth mentioning that an STM investigation of Au wires on vicinal surfaces
shows voltage-dependent oscillations of the distance between the STM peak and the surface.
Moreover, the topography images show that the electron density of distribution between atoms
strongly depends on the applied voltage and for example for a negative voltage one can see
more peaks than for the positive voltage; see figure 1 in [5]. In an STM investigation the
applied voltage between the STM tip and the surface can modify the position of the single
electron energies ε0 and this is the reason we observe different characteristics for positive and
negative voltages; see also [6].

Next, in figure 5 we show the average QW charge as a function of the wire’s length, N .
The average charge of the wire is obtained from the following relation: 〈Q〉 = ∑N

n=1 Qn/N .
The broken, thin solid and thick solid lines correspond to different coupling strengths between
atoms, VN = 1, 2 and 4, respectively. The left (right) panels correspond to the condition for
the three (four)-atom period of the conductance, ε0 = ±VN (ε0 = ±√

2VN ). The average
charge of the wire in both cases depends on the position of ε0 and for example for ε0 = −VN

(left upper panel) it tends to a constant value with increasing N , i.e. 〈Q〉 = 2/3. Moreover,
it oscillates with the same period as the conductance but the amplitude of these oscillations
decreases very quickly with N . For ε0 = +VN (left lower panel) we also observe that the
amplitude of the average charge decreases with N and 〈Q〉 tends to the value 1/3 for large N .
Similar conclusions are valid for the case of four-atom conductance oscillations (right panels)
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Figure 6. Local density of states at n = 1 (2 and 3) atom—thick solid lines for the length of the
quantum wire N = 6 (left panels) and N = 7 (right panels) for ε0 = 0 and εx = 0 (upper panels),
εx = 1 (lower panels); VN = 4, � = 1. The adatom connected to the first QW atom, l = 1, t = 2.
The dotted lines correspond to LDOS for the non-disturbed wire.

and for other periods (not shown here). For M = 4 the average charge, with increasing N ,
tends to 3/4 (ε0 = −√

2VN , right upper panel) and 1/4 (ε0 = +√
2VN , right lower panel).

In the case of four-atom oscillations the occupation 2/4 is also possible but it appears for the
condition ε0 = 0 (even–odd conductance oscillations) which is a special case of every even-
atom oscillation. It is a known effect that the occupation of an infinite wire is determined by
the period of conductance oscillations [13, 14] and for period M we have M − 1 possible
occupations of the wire: 1/M, 2/M, . . . , (M − 1)/M . It is interesting that the average QW
charge, for large N , is independent on the coupling strength VN . The differences are visible
only for not very long wires. Moreover, for strong value of VN the average charge oscillations
are more visible than for weak couplings.

The above conclusions suggest that one can influence the total charge localized at the finite
and not very long wire by changing the distance between electrodes, for example by using the
MCBJ method. In that method a few-atom wire can be formed between electrodes. One of
these electrodes can vibrate or change its position (the coupling strength VN is also changed)
but the total number of atoms in the wire should remain unchanged. Thus, in this system one
can detect the charge current because the average charge of a not very long wire depends on the
coupling strength, VN (and so on the distance between electrodes), as was shown in figure 5.

3.2. QW with side-attached adatom

Here we study the influence of a side-attached atom on the local density of states and charges in
the wire. In figure 6 the LDOS at the first, the second and the third atom (thick lines) in a wire
which consists of N = 6 (left panels) and N = 7 (right panels) atoms are shown. The dotted
lines correspond to the wire which is non-disturbed by an adatom (plotted only for comparison
between considered cases) and are the same as in figure 1. The additional atom is connected
to the first QW atom but the results are also valid for connections with other QW atoms. The
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upper panels correspond to the case when the single-electron energy of the adatom is the same
as that of the QW atoms i.e. εx = ε0 = 0. The lower panels are obtained for εx = 1. First, let
us analyse the case N = 6 (an even number of atoms in the wire). For the non-disturbed wire
the LDOSs at every QW atom are almost zero for ε0 = EF = 0 whereas in the presence of
the adatom there is very high peak in the LDOS (n = 2, 4). Moreover, the distances between
side-band peaks are wider when the adatom is connected to the wire. For an odd number of
atoms in the wire, N = 7, the LDOSs of the non-disturbed wire at the sites n = 1, 3, 5, 7 are
characterized by maximal values at the Fermi level. In the presence of the adatom the LDOS
of every atom in the wire has a minimum at the Fermi level but there are two local symmetric
maxima near this level (for each QW atom); see the solid lines in the upper right panel. The
relative distance between these maxima depends on the coupling strength t (here t = 2). In
the case when the adatom electron energy level is not equal to the electron energy of the QW
atoms, i.e. ε0 
= εx , the situation is somewhat different. The local maxima for N = 6 are
shifted versus the Fermi energy and minima in the LDOS appear for E = εx . For N = 7 the
values of the LDOS for every atom in the wire are rather small but non-zero. For the energy
E = εx , the LDOS at every odd atom in the wire, n = 1, 3, 5, 7, is equal to zero (for every
even atom we observe a non-zero value of the LDOS). Moreover, the distance between side-
band peaks is wider in comparison with the non-disturbed wire. Although we discuss here only
the case of N = 6 and 7 the main features of the LDOS also remain valid for different N . It is
worth mentioning that the LDOSs in the presence of an adatom (ε0 
= εx ) are not symmetrical
functions (versus E − ε0) and also the LDOS of the nth QW atom is not the same as that of
the N − n + 1th atom (this conclusion was satisfied for a non-disturbed wire). Thus we expect
to observe non-symmetrical behaviour of the local charge inside a disturbed wire. It will be
shown later that the charge waves are disturbed due to the adatom.

Generally speaking, an adatom changes the LDOS of a wire. For an even number of atoms
in the wire the local maximum appears at the Fermi energy (when all atoms are the same kind)
or near the Fermi energy (for different atoms). On the other hand, for an odd number of atoms in
the wire the adatom blocks the LDOS at the Fermi level. In this case two local maxima appear
near EF. Moreover, the distance between LDOS peaks is somewhat larger for a disturbed wire.
One can conclude that the adatom disturbs the LDOSs of the QW atoms and changes their
values for the energy which corresponds to the adatom electron energy level. This means that
in the presence of an adatom the electron transport through a wire and QW charges change their
values, and thus it is possible to experimentally observe these effects.

In figure 7 the total density of states at the Fermi level, DOSN+1 = ∑N+1
i=1 LDOSi , is

shown as a function of the length of the wire, N , and the position of the single electron energy
ε0. The adatom is connected with the second QW atom, l = 2 and εx = 1, t = 2. The pattern
of maxima and minima in the DOS of the system is shown in figure 7. In comparison with
the results for a non-disturbed wire, figure 2, the symmetry of the DOS structure is broken.
The main differences are visible for the region ε0 > 0, i.e. for the energy which corresponds
to εx . This conclusion is in agreement with the results from figure 6, where only the LDOSs
were analysed. The upper light fields of maxima in figure 7 are shifted in comparison with
figure 2 and causes the distance between maxima for fixed N to increase; compare this with
the same effect in figure 6. The structure of the DOS for ε0 < 0 remains almost unchanged
in comparison with a wire without an adatom. The total DOS of a wire is connected with the
conductance, see for example figure 2, and the results shown in figure 7 are proportional to the
conductance of the wire disturbed by the adatom. Moreover, these results can be confirmed
experimentally using the sharp-tip STM method (one has to measure and sum the LDOSs) or
using the blunt-tip STM (one measures the density of states of all QW atoms; N must be rather
small).
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Figure 7. The total density of states at the Fermi level (EF = 0) as a function of the wire’s length,
N , and ε0 for εx = 1, t = 2, l = 2, VN = 4, � = 1.
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Figure 8. The charges localized at every atom for an N = 18 QW for ε0 = −√
3VN as a function

of t ; the other parameters are l = 2, εx = 0, and VN = 4. The fields between integer n are plotted
for better visualization.

Next, in figure 8 the local charge localized at every QW atom as a function of the coupling
strength, t , is shown for N = 18, VN = 4 and ε0 = √

3VN (the condition for a six-atom
period). The adatom is connected with the third QW atom, l = 3. The fields between integer n
are plotted for better visualization of the local charge surface. For t = 0 (non-disturbed wire)
the result is the same as that presented in figure 4, the upper panel, thin solid line—the maxima
of the local charge we observe for n = 1, 7, 12 and 18. For small coupling t the structure of
the local charges in the wire is almost unchanged. For greater value of t the local charge at the
third QW atom decreases and the local minimum is observed for n = 3. Moreover, the local
maximum appears for n = 4—in the case of t = 0 the local minimum is for n = 4. The local
charges localized at others QW atoms remain more or less the same. The main differences are
observed for the atom which is connected with the adatom or at atoms which are situated very
close to this atom. In conclusion, the additional atom causes a disturbance of the local charge at
the QW atom which is connected with the adatom. Thus the charge fluctuations (waves) along
the wire in the presence of the adatom are not symmetrical in comparison with a non-disturbed
chain. These results are also valid for different positions of the adatom at the wire.
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4. Conclusions

In summary, using the tight-binding Hamiltonian and retarded Green function formalism the
local and total density of states and the charges of a QW were obtained for a perfect and a
disturbed wire. The same single electron energies of all atoms, ε0, and the same nearest-
neighbour interactions, VN , in the wire were assumed. The electron–electron interactions
inside the wire, U , were not taken into consideration. In the presence of a rather weak U
and under the Hartree–Fock approximation charge waves can be observed in the system (for
U = 0 they exist). Moreover, as was shown in [18] the conductance oscillations also remain
for U → ∞ and (because these oscillations are linked with the charge waves inside the wire)
it is expected that for the finite U the fluctuations of the charge can also be observed especially
in the paramagnetic configuration. As concerns the ferromagnetic case, charge waves can exist
(the Friedel oscillations in a one-dimensional fermion system exist, [29]) but it is difficult to
predict the behaviour of spin-up and spin-down charges inside the wire. The problem will be
further studied.

The main results of this paper can be summarized as follows.

(1) An analytical formula for the local density of states at every QW atom in a wire with
side-attached adatom was obtained, equation (5), and discussed.

(2) The LDOSs inside a wire which consists of an even number of atoms are characterized by
local minima for E − ε0 = 0 (for every QW atom) but in the presence of an adatom
there are maxima in the LDOSs, depending on the position of εx ; compare figures 1
and 6. Moreover, the structure of the total DOS is characterized by the local minima
and maxima, and for a non-disturbed wire its structure is fully symmetric. The adatom
causes a disturbance in this symmetry especially for the energy which corresponds to the
single electron energy of the adatom; compare figures 2 and 7.

(3) The period of the charge waves is correlated with the period of the conductance
oscillations. Charge waves are observed in a finite wire for the case when the condition for
the conductance to oscillate is satisfied. For the case when this condition is not satisfied
charge waves are not observed; compare figures 3 and 4. In the presence of an adatom
the oscillations of the local charge are disturbed and the main differences in the charge are
observed for the QW atom directly connected with the adatom.

(4) For the single electron energies, ε0, localized above the Fermi energy the local charge curve
(the local charges at the QW atoms) possesses one maximum less than for ε0 localized
below EF; see figure 4.

It is believed that the results presented in this work can be confirmed experimentally using
the STM or MCBJ methods. They can also be useful in nanoelectronics as the monatomic chain
is the thinnest possible electric wire. Moreover, one can use the conclusions of this paper to
interpret the STM pictures of one-dimensional systems where a different number of peaks are
observed for different voltage polarizations.
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